

David March^{1,4*}, Ohiana Revuelta^{1,2}, Diego Álvarez-Berastegui¹, Guillem Félix³, Gloria Fernández³, Brendan J Godley⁴, Debora Morrison³, Baptiste Mourre¹, Ananda Pascual⁵, Ricardo Sagarminaga⁶, Yonat Swimmer⁷, Marc Torner¹, Joaquín Tintoré^{1,5}

1 Balearic Islands Coastal Observing and Forecasting System (SOCIB, Spain), 2 Universidad de Valencia (Spain), 3 Fundación Palma Aquarium, 4 University of Exeter (UK), 5 Mediterranean Institute for Advanced Studies (IMEDEA-CSIC/UIB, Spain), 6 Alnitak (Spain), 7 Alnitak (Spain)
*dmarch@socib.es

INTEGRATION OF SEA TURTLE TRACKING WITH OCEAN OBSERVING SYSTEMS

HOW OCEANOGRAPHIC TURTLES ARE INTEGRATED INTO OOS?

HOW CAN OOS CONTRIBUTE TO SEA TURTLE CONSERVATION & MANAGEMENT?

3 HOW CAN SEA TURTLE TRACKING CONTRIBUTE TO OOS?

INTEGRATION OF SEA TURTLE TRACKING WITH OCEAN OBSERVING SYSTEMS

HOW OCEANOGRAPHIC TURTLES ARE INTEGRATED INTO OOS?

HOW CAN OOS CONTRIBUTE TO SEA TURTLE CONSERVATION & MANAGEMENT?

3 HOW CAN SEA TURTLE TRACKING CONTRIBUTE TO OOS?

BALEARIC ISLANDS COASTAL OBSERVING AND FORECASTING SYSTEM (SOCIB) AS AN EXAMPLE OF OOS

A Marine Research Infrastructure: a multi-platform observing system, from nearshore to open-ocean

ANIMAL-BORNE INSTRUMENTS: A NEW OCEAN OBSERVING PLATFORM

_

INTEGRATION IN NEAR-REAL TIME

Location data from all platforms is currently integrated into SOCIB Deployment Application (DAPP)

Satellite tracks are integrated into ocean observing systems, providing simultaneous observations of multiple platforms in near real-time troughout a common marine data management system

INTEGRATION OF SEA TURTLE TRACKING WITH OCEAN OBSERVING SYSTEMS

HOW OCEANOGRAPHIC TURTLES ARE INTEGRATED INTO OOS?

HOW CAN OOS CONTRIBUTE TO SEA TURTLE CONSERVATION & MANAGEMENT?

HOW CAN SEA TURTLE TRACKING CONTRIBUTE TO OOS?

CASE 1: TOWARDS AN OPERATIONAL ENVIRONMENTAL NICHE MODEL

Integration of data-assimilative numerical models and remote sensing observations

SATELLITE TRACKING DATA (Location only)

- Loggerheads in oceanic phase (28-83 cm CCL)
- Long-term dataset: 2003-2017 (n=51)
- Source: Alnitak (unpubl.), Eckert et al. 2008, Cardona & Hays (2018).

(Alvarez-Berastegui et al 2016)

ENVIRONMENTAL DATA

- Numerical models from CMEMS: SST, Salinity, PP, Phytoplankton
- Remote sensing from CMEMS: SLA, EKE, CHLa
- Bathymetry from EMODnet
- Derived products from SOCIB (gradients)

CASE 1: TOWARDS AN OPERATIONAL ENVIRONMENTAL NICHE MODEL

Pseudo-absences100 CRW simulations per turtle

Modelling workflow (adapted from Hazen et al. 2016)

Daily predictions of the species-niche model (MaxEnt). Salinity, Bathymetry, SST and EKE are the 4 main predictors

CASE 2: MULTIPLATFORM EXPERIMENT

Ocean gliders are used to monitor biophysical paramenters while following the trajectory of sea turtles in real-time

SEA TURTLE

GLIDER

)

5

TTF /

CASE 2: MULTIPLATFORM EXPERIMENT

Underwater drones monitoring the oceans

Long-endurance autonomous underwater vehicles (AUV) measure biophysical parameters in a 3D space. Gliders are controlled remotely via satellite communications (Iridium)

CASE 2: MULTIPLATFORM EXPERIMENT

Adaptive piloting: First trial on July 2016 (13 days mission)

•

We used a shallow Slocum glider to sample the water column along the trajectory of one turtle up to 200 m deep.

CASE 3: IDENTIFICATION OF OPTIMAL RELEASE LOCATIONS

State to the control of the control

SOCIB Wave Forecast for the date of release

lack

Real-time data using SOCIB viewer connected from www.fundacionpalmaaquarium.org

INTEGRATION OF SEA TURTLE TRACKING WITH OCEAN OBSERVING SYSTEMS

HOW OCEANOGRAPHIC TURTLES ARE INTEGRATED INTO OOS?

HOW CAN OOS CONTRIBUTE TO SEA TURTLE CONSERVATION & MANAGEMENT?

HOW CAN SEA TURTLE TRACKING CONTRIBUTE TO OOS?

ANIMAL-BORNE INSTRUMENT

- SPLASH Tags (Wildlife Computers), suitable size for juvenile loggerheads (>45 cm CCL)
- Location data: ARGOS (GPS in few tags as well)
- Depth and Temperature at 5 min intervals relayed through ARGOS satellite (60-80% data recovered)

DATA QUALITY CONTROL

- ✓ Location: speed & angle filters. Interpolate to 5 min intervals
- Pressure sensor: Zero-offset correction
- ✓ **Temperature**: filter out insolation events

DATA VALIDATION

TIME-TEMPERATURE-DEPTH RECORDS

TIME-TEMPERATURE-DEPTH RECORDS

CAN SEA TURTLES CONTRIBUTE TO OOS IN REGIONS OF INTEREST FOR THE OCEANOGRAPHIC COMMUNITY?

Temperature profiles collected by sea turtles can complement near real-time ocean monitoring systems like numerical models, undersampled regions, and shallow waters across multiple national borders

CONNECT YOUR TAG TO TWITTER!

Raise awareness for ocean conservation using real-time animal tracking data and social networks

TAKE HOME MESSAGES

HVALA!

THANK YOU!

¡MUCHAS GRACIAS!

Dr. David March dmarch@socib.es

